Liquid State: Physical properties of Liquid, vapour pressure, surface tension and co-efficient of viscosity and their applications; effect of concentration of solutes on surface tension and viscosity; effect of temperature on viscosity of liquids.
Solid State: Unit Cells, Miller indices, crystal systems and Bravais Lattices, elementary applications of vectors to crystal
systems; X-ray diffraction, Bragg’s Law, Structure of NaCl, CsCl, and KCl, diamond, and graphite; Close
packing in metals and metal compounds, semiconductors, insulators; Defects in crystals, lattice energy;
isomorphism; heat capacity of solids.
Chemical Thermodynamics: Mathematical treatment: Exact and in-exact differentials, partial derivatives, Euler’s reciprocity, cyclic rule;
Reversible and irreversible processes; Laws of thermodynamics, thermochemistry, thermodynamic
functions, such as enthalpy, entropy, and Gibbs free energy, their properties and applications; Partial molar
quantities, dependence of thermodynamic parameters on composition, Gibbs Duhem equation, chemical
potential and its applications.
Chemical and Phase Equilibria: Law of mass action; Kp, Kc, Kx and Kn; Effect of temperature on K; Le-Chatelier principle; Ionic equilibria in
solutions; pH and buffer solutions; Salt hydrolysis; Solubility and solubility product; Acid – base titration
curves; Indicators; Dilute solutions; Raoult’s and Henry’s Laws and their applications; Colligative properties;
Gibbs phase rule; Phase equilibria; single and two-component phase diagrams.
Electrochemistry: Conductivity, equivalent and molar conductivity and their properties; Kohlrausch law; DebyeHückelOnsager equation; Ionic velocities, mobilities, transference numbers; Applications of conductance
measurement; Quantitative aspects of Faraday’s laws of electrolysis, applications of electrolysis in
metallurgy and industry; Electromotive force of a cell, Nernst equation; Standard electrode potential,
Electrochemical series; Concentration cells with and without transference; Applications of EMF
measurements including potentiometric titrations.
Chemical Kinetics: Order and molecularity of a reaction, differential and integrated form of rate expressions - basic ideas of
integration and differentiation; Kinetics of opposing, parallel, and consecutive reactions; Steady state
approximation in reaction mechanisms; Chain reactions; Uni-molecular reaction (Lindemann mechanism);
Temperature dependence of reaction rates, Arrhenius equation; activation energy; Collision theory of reaction
rates; Types of catalysts, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces;
Enzyme catalysis (Michaelis-Menten mechanism, Double reciprocal plot), Acid-base catalysis.
Adsorption: Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films
on liquids.
Spectroscopy: Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy.
Basic Concepts in Organic Chemistry and Stereochemistry: Electronic effects (resonance, inductive, hyperconjugation) and steric effects and its applications (acid/base property); optical isomerism in compounds with and without any stereocenters (allenes, biphenyls); conformation of acyclic systems (substituted ethane/n-propane/n-butane) and cyclic systems, substituted cyclohexanes, and polycyclic (cis and trans decalins) systems.
Organic Reaction Mechanism and Synthetic Applications: Chemistry of reactive intermediates (carbocations, carbanions, free radicals, carbenes, nitrenes, benzynes); nucleophilic substitution, elimination reactions and mechanisms; Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons-Smith reaction, Reimer-Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction; Pinacolpinacolone, Favorskii, benzilic acid rearrangement, Baeyer-Villeger reaction; oxidation and reduction reactions in organic chemistry; Organometallic reagents in organic synthesis (Grignard, organolithium , organocopper and organozinc (Reformatsky only); Diels-Alder, electrocyclic and sigmatropic reactions; functional group inter-conversions and structural problems using chemical reactions.
Qualitative Organic Analysis: Identification of functional groups by chemical tests; elementary UV, IR and 1H NMR spectroscopic techniques as tools for structural elucidation of simple organic molecules.
Natural Products Chemistry: Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids.
Aromatic and Heterocyclic Chemistry:
Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom:
synthesis, reactivity and properties, aromaticity; Electrophilic and nucleophilic aromatic substitution reactions.
Extractions of Metals:
General methods of isolation and purification of elements; Principles and applications of Ellingham
diagram.
Chemical Bonding and shapes of molecules:
lonic bond: Packing of ions in crystals, radius ratio rule, Born-Landé equation, Kapustinskii expression,
Madelung constant, Born-Haber cycle, solvation energy, polarizing power and polarizability; Fajan’s
rules; Covalent bond: Lewis structure, valence bond theory. Hybridization, molecular orbital theory,
molecular orbital diagrams of diatomic and simple polyatomic molecules and ions; Multiple bonding (σ
and π bond approach) and bond lengths; van der Waals forces, ion-dipole forces, dipole-dipole
interactions, induced dipole interactions, instantaneous dipole-induced dipole interactions, hydrogen
bonding; Effect of intermolecular forces on melting and boiling points, solubility energetics of dissolution
process; Bond dipole, dipole moment, and molecular polarizabilities; VSEPR theory and shapes of
molecules; ionic solids.
Main Group Elements (s and p blocks): Reactions of alkali and alkaline earth metals with oxygen, hydrogen and water; Alkali and alkaline earth metals in liquid ammonia; Gradation in properties of main group element in a group; Inert pair effect; Synthesis, structure and properties of diborane, ammonia, silane, phosphine and hydrogen sulphide; Allotropes of carbon; Oxides of nitrogen, phosphorus and sulphur; Oxoacids of phosphorus, sulphur and chlorine; Halides of silicon and phosphorus; Synthesis and properties of borazine, silicone and phosphazene; Synthesis and reactions of xenon fluorides.
Transition Metals (d block): Characteristics of d-block elements; oxide, hydroxide and salts of first row metals; coordination complexes: structure, isomerism, reaction mechanism and electronic spectra; VB, MO and crystal field theoretical approaches for structure, color and magnetic properties of metal complexes; Organometallic compounds with metal-ligand single and multiple bonds (such as metal carbonyls, metal nitrosyls and metallocenes); Homogenous catalysis involving Wilkinson’s catalyst.
Bioinorganic Chemistry: Essentials and trace elements of life; basic reactions in the biological systems and the role of metal ions, especially Fe2+, and Zn2+; structure and function of myoglobin, hemoglobin and carbonic anhydrase.
Instrumental Methods of Analysis: Basic principles; instrumentations and simple applications of conductometry, potentiometry and UV-vis spectrophotometry; analyses of water, air and soil samples.
Analytical Chemistry:
Principles of qualitative and quantitative analysis; Acid-base, oxidation- reduction and complexometric
titrations using EDTA; Precipitation reactions; Use and types of indicators; Use of organic reagents in
inorganic analysis; Radioactivity, nuclear reactions, applications of isotopes; Mathematical treatment
in error analysis, elementary statistics and probability theory.
Main Group Elements: Hydrides, halides, oxides, oxoacids, nitrides, sulfides – shapes and reactivity. Structure and bonding of boranes, carboranes, silicones, silicates, boron nitride, borazines and phosphazenes. Allotropes of carbon. Chemistry of noble gases, pseudohalogens, and interhalogen compounds. Acid-base concepts.
Transition Elements: Coordination chemistry – structure and isomerism, theories of bonding (VBT, CFT, and MOT). Energy level diagrams in various crystal fields, CFSE, applications of CFT, Jahn-Teller distortion. Electronic spectra of transition metal complexes: spectroscopic term symbols, selection rules, Orgel diagrams, charge-transfer spectra. Magnetic properties of transition metal complexes. Reaction mechanisms: kinetic and thermodynamic stability, substitution and redox reactions.
Lanthanides and Actinides: Recovery. Periodic properties, spectra and magnetic properties. Organometallics: 18-Electron rule; metal-alkyl, metal-carbonyl, metal-olefin and metal carbene complexes and metallocenes. Fluxionality in organometallic complexes. Types of organometallic reactions. Homogeneous catalysis - Hydrogenation, hydroformylation, acetic acid synthesis, metathesis and olefin oxidation. Heterogeneous catalysis - FischerTropsch reaction, Ziegler-Natta polymerization.
Radioactivity: Decay processes, half-life of radioactive elements, fission and fusion processes.
Bioinorganic Chemistry: Ion (Na+ and K+) transport, oxygen binding, transport and utilization, electron transfer reactions, nitrogen fixation, metalloenzymes containing magnesium, molybdenum, iron, cobalt, copper and zinc.
Solids: Crystal systems and lattices, Miller planes, crystal packing, crystal defects, Bragg’s law, ionic crystals, structures of AX, AX2, ABX3 type compounds, spinels, band theory, metals and semiconductors.
Instrumental Methods of Analysis: UV-visible spectrophotometry, NMR and ESR spectroscopy, mass spectrometry. Chromatography including GC and HPLC. Electroanalytical methods- polarography, cyclic voltammetry, ion-selective electrodes. Thermoanalytical methods.Stereochemistry: Chirality of organic molecules with or without chiral centres and determination of their absolute configurations. Relative stereochemistry in compounds having more than one stereogenic centre. Homotopic, enantiotopic and diastereotopic atoms, groups and faces. Stereoselective and stereospecific synthesis. Conformational analysis of acyclic and cyclic compounds. Geometrical isomerism. Configurational and conformational effects, and neighbouring group participation on reactivity and selectivity/specificity.
Reaction Mechanisms: Basic mechanistic concepts – kinetic versus thermodynamic control, Hammond’s postulate and Curtin-Hammett principle. Methods of determining reaction mechanisms through identification of products, intermediates and isotopic labeling. Nucleophilic and electrophilic substitution reactions (both aromatic and aliphatic). Addition reactions to carbon-carbon and carbon-heteroatom (N,O) multiple bonds. Elimination reactions. Reactive intermediates – carbocations, carbanions, carbenes, nitrenes, arynes and free radicals. Molecular rearrangements involving electron deficient atoms.
Organic Synthesis: Synthesis, reactions, mechanisms and selectivity involving the following classes of compounds – alkenes, alkynes, arenes, alcohols, phenols, aldehydes, ketones, carboxylic acids, esters, nitriles, halides, nitro compounds, amines and amides. Uses of Mg, Li, Cu, B, Zn and Si based reagents in organic synthesis. Carbon-carbon bond formation through coupling reactions - Heck, Suzuki, Stille and Sonogoshira. Concepts of multistep synthesis - retrosynthetic analysis, strategic disconnections, synthons and synthetic equivalents. Umpolung reactivity – formyl and acyl anion equivalents. Selectivity in organic synthesis – chemo-, regio- and stereoselectivity. Protection and deprotection of functional groups. Concepts of asymmetric synthesis – resolution (including enzymatic), desymmetrization and use of chiral auxilliaries. Carbon-carbon bond forming reactions through enolates (including boron enolates), enamines and silyl enol ethers. Michael addition reaction. Stereoselective addition to C=O groups (Cram and Felkin-Anh models).
Pericyclic Reactions and Photochemistry: Electrocyclic, cycloaddition and sigmatropic reactions. Orbital correlations - FMO and PMO treatments. Photochemistry of alkenes, arenes and carbonyl compounds. Photooxidation and photoreduction. Di-π-methane rearrangement, Barton reaction.
Heterocyclic Compounds: Structure, preparation, properties and reactions of furan, pyrrole, thiophene, pyridine, indole, quinoline and isoquinoline.
Biomolecules: Structure, properties and reactions of mono- and di-saccharides, physicochemical properties of amino acids, chemical synthesis of peptides, structural features of proteins, nucleic acids, steroids, terpenoids, carotenoids, and alkaloids.
Spectroscopy: Applications of UV-visible, IR, NMR and Mass spectrometry in the structural determination of organic molecules